Dynamic RDMM: Scalable, Controllable Dataset Generation for
Instruction-Grounded Robot Learning
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Fig. 1: Dataset Overview. Dynamic RDMM comprises 23 household tasks across manipulation, navigation, and interaction.
It enables scalable, curriculum-driven data generation with precise control over difficulty and task type distribution. A model
trained on this dataset was successfully deployed at RoboCup@Home.

Abstract— Robotic decision-making with large language
models (LLMs) is increasingly constrained by the scarcity of
datasets that are both linguistically expressive and grounded in
symbolic robotic actions. We introduce the Dynamic RDMM
Dataset (D-RDMM), a controllable, text-to-text dataset genera-
tor that maps natural-language instructions to structured action
programs across 23 real-world household tasks.

D-RDMM is built using a two-stage generation process. First,
hierarchical template expansion recursively constructs multi-
step task descriptions from nested logic templates, enabling
variable instruction complexity and compositional diversity.
Second, constraint-aware content generation fills these templates
using curated embeddings (verbs, rooms, objects, names) while
enforcing semantic and physical validity. This process produces
1,800 expert-verified instruction—action pairs and can be scaled
to over 100,000 diverse, syntactically and semantically valid
examples.

Crucially, D-RDMM supports task rebalancing and ad-
justable instruction difficulty, allowing researchers to generate
lightweight commands (e.g.,*“go to the kitchen”) or compound
sequences (e.g., “deliver an item to Kai and follow him until
he sits”’). This makes D-RDMM a practical tool for curriculum
learning, ablation studies, and controlled benchmarking.

We validate by fine-tuning LLaMA-3-8B, Mistral-7B, and
Qwen-0.5 models, achieving 93% accuracy and outperform-
ing ChatGPT-40 baselines. In real-world deployment at
RoboCup@Home, D-RDMM-trained models successfully exe-
cuted unseen multi-step commands in noisy, natural environ-

ments. We release all templates, Dataset, code, and generation
tools to support reproducible, instruction-grounded robot learn-
ing.

Project website:blank.blank/blank

I. INTRODUCTION

Robotic systems that can follow natural-language in-
structions promise to make intelligent agents more ac-
cessible and useful in everyday environments. Recent ad-
vances in instruction-tuned Large Language Models (LLMs)
have demonstrated compelling capabilities in translating user
commands into structured plans, enabling robots to reason
over complex task sequences. However, achieving robust,
real-world instruction-following behavior remains challeng-
ing—especially when LLMs are deployed on embodied
agents operating in noisy, dynamic household environments.

One of the central obstacles is the shortage of domain-
specific, symbolically grounded training datasets. General-
purpose web-scale corpora offer vast linguistic variety, but
lack the structure, action alignment, and feasibility con-
straints needed for robotic execution. Conversely, existing
robotics datasets—such as ALFRED [1] and TEACh [2]
set—provide grounded examples, but are typically static,
narrow in scope, or costly to expand. As a result, robot



learning pipelines suffer from a data bottleneck: when mod-
els underperform on a specific task, researchers have no
quick, controllable way to inject targeted supervision without
manual annotation. This gap is especially apparent in open
competition settings such as RoboCup@Home [3].

In this work, we introduce the Dynamic RDMM
Dataset—and more importantly, the controllable dataset
generation engine that produces it. RDMM is a text-to-
text dataset in which each sample maps a natural-language
instruction to a structured action sequence, composed of
symbolic primitives (e.g., MoveTo(kitchen), Pickup(milk),
Respond(”I’'m here”)). These sequences can be interpreted
directly by robotic planners or mapped onto platform-specific
skills, making the dataset readily deployable. Unlike previous
datasets, RDMM is not a static benchmark—it is a paramet-
ric data engine enabling controllable, symbolic instruction-
action supervision at scale.

The core of D-RDMM is a two-stage generation process:

1) Hierarchical template expansion: A compact YAML
library encodes 23 common household tasks (e.g.,
guiding a person, delivering an item, answering a ques-
tion) using nested logic structures. These templates
recursively expand into semantically valid multi-step
instructions.

2) Dynamic content generation: Templates are pop-
ulated with verbs, object types, room names, and
personal references drawn from curated embedding
dictionaries. Semantic constraints ensure physical plau-
sibility (e.g., “put the pizza on the table” is allowed;
“put the microwave on the sandwich” is not).

This system offers several advantages critical for robot
learning:

o Scalability: From just 23 task templates, D-RDMM can
generate over 100,000 valid instruction—action pairs.

o Task controllability: Researchers can dynamically re-
balance data by adjusting task-specific weights without
reauthoring templates.

o Curriculum and ablation support: Lexical variation,
compositional complexity, and object diversity can all
be programmatically adjusted to match experimental
needs.

To validate D-RDMM, we fine-tune three open-source
LLMs (LLaMA-3-8B, Mistral-7B, Qwen-0.5) using only the
1,800-sample seed set. These models achieve 93% accuracy
on held-out samples and generalize to previously unseen
instructions. Deployed on a mobile robotic platform at
RoboCup @Home, D-RDMM-trained models reliably execute
composite instructions in a real-world, multi-user environ-
ment.

Our contributions are three-fold:

o A controllable dataset generation framework for
instruction-following tasks in robotic environments;

« The Dynamic RDMM Dataset, featuring 1,800 expert-
validated pairs with the capacity to scale to 100k+
examples;

o Empirical validation showing that small, well-
structured datasets can train LLMS to reason over sym-
bolic action plans and generalize in real-world robotic
applications.

By treating dataset generation as a parameterized process
rather than a static artifact, we turn data design into a
flexible tool in the robot learning loop—paving the way for
faster, more adaptive development of LLM-based instruction-
following systems.

II. RELATED WORK

Research on natural language instruction understanding for
service robots spans a diverse set of approaches, which can
be broadly grouped into: (1) semantic parsing and action
prediction methods, (2) scalable dataset generation strategies,
(3) multimodal instruction-following systems based on large
pretrained models, and (4) LLM-based methods for robotic
instruction understanding.

Semantic Parsing for Robot Instructions: A wide range
of models have been proposed to translate natural language
commands into executable action sequences or structured
representations. For example, Misra et al. [4] predict low-
level actions in simulated 3D environments, while Dong
and Lapata [5] introduce hierarchical decoding for mapping
sentences to logical forms. Other techniques include syn-
tactic parsing [6], graph-based execution models [7], and
transition systems [8]. More recent approaches like GRID [9]
use scene graphs to support instruction-driven planning with
structured environmental representations. These techniques
often provide strong interpretability but depend on domain-
specific annotations, limiting generalization.

Our work departs from these by offering a training
resource explicitly designed to support structural parsing
of robotic commands without domain-specific fine-tuning.
We provide compositional, annotated examples aligned with
symbolic robotic tasks, enabling more modular and transfer-
able instruction understanding.

Template-Based Dataset Generation: Compositional
data generation methods have been used to reduce the manual
burden of annotation, such as Neural Module Networks [10]
and probabilistic program synthesis [11]. These methods
leverage templates with lexical placeholders to create large-
scale datasets. Unlike VQA datasets like CLEVR, which
focus on visual reasoning in synthetic environments, our
dataset emphasizes symbolic outputs grounded in robot-
executable actions. While Neural Module Networks decom-
pose tasks into perceptual modules, our dataset targets struc-
tural symbolic parsing applicable across different planning
pipelines.

Although prior efforts offer scalability, they often
lack domain-general symbolic representations tailored for
robotics. D-RDMM applies a similar compositional strategy
but with emphasis on consistent symbolic outputs, ensuring
high annotation quality and combinatorial diversity through
structured expansion.

Multimodal Instruction-Following: Benchmarks like
ALFRED [1], TEACh [2], RT-1 [16], and PaLM-E [17]



TABLE I: Comparison of approaches for robot natural language instruction understanding

Approach Data Gen. Method Expandable Input Real-world
ALFRED [1] Hand Annotated - Text+Vision -
TEACh [2] Hand Annotated - Text+Vision -
SayCan [12] LLM - Text+State v
ProgPrompt [13] LLM - Text v
GRID [9] LLM + Scene Graphs - Text+Scene -
ViLaln [14] VLM - Text+Vision v
GRAIL [15] LLM +PDDL - Text+State -
D-RDMM (ours) Template + Constraints v Text v

integrate visual and linguistic signals to enable end-to-end
task execution. RT-2 [18] extends this idea by transferring
internet-scale knowledge to robotics, while ViLaln [14]
builds a vision-language interpreter tailored to planning.

Our method contrasts with these end-to-end pipelines by
isolating the language parsing component. Unlike ALFRED
or TEACh, which measure overall success in visually-rich
simulations, we decouple perception and language under-
standing, enabling symbolic planning and modular error
analysis. Compared to RT-series and CoLLIE, which pri-
oritize joint vision-language-action learning, we generate
symbolic intermediate representations, supporting integration
with existing task planners and broader robotic ecosystems.

LLM-Based Methods for Robotic Instruction Un-
derstanding: Large language models have recently shown
promise in robotic instruction following. SayCan [12]
grounds language in robotic affordances, while Prog-
Prompt [13] uses prompt engineering to generate sym-
bolic plans. GRAIL [15] extends LLM capabilities by in-
ducing grounded action rules. SayComply [19] builds on
SayCan to align instructions with operational constraints,
and Teriyaki [20] merges symbolic reasoning with neural
networks.

These works demonstrate flexible language understanding
but often produce unstructured or implicit outputs. Our
approach complements them by providing explicit symbolic
supervision that can guide or evaluate LLM outputs. By
generating compositional action sequences in formal syntax,
our dataset enhances the grounding, interpretability, and re-
liability of LLM-based robotic systems, especially in safety-
critical or high-precision domains.

Comparative Analysis of Approaches: We summarize
the differences between D-RDMM and existing methods in
Table [

III. METHODS

The Dynamic RDMM Dataset is not a static collection,
but the output of a controllable, parameterized generation
engine. It is constructed through a two-stage algorithmic
process that transforms a compact set of YAML templates
into thousands of semantically grounded, text-to-text in-
struction—action pairs. This modular architecture enables
researchers to programmatically scale, rebalance, and adapt
the dataset to match specific training and evaluation needs
in robot learning, summarized in Fig.

In addition to dataset generation, the full end-to-end execu-
tion framework—including speech recognition (STT), text-
to-speech (TTS), visual perception models, person tracking,
and symbolic planning—was deployed on a mobile platform
and orchestrated using RDMM-trained language models.
This integrated Al stack allows natural language instructions
to be grounded in multimodal real-world execution. Details
of the complete robotic system, including software and
hardware integration, are described in our companion paper
[21].

A. Generation Pipeline Overview

The D-RDMM dataset is generated via a two-stage process
that supports structured language generation and controllable
task complexity.

Stage 1 — Hierarchical Template Expansion. Each task
category (e.g., follow, serve, guide) is defined by high-level
templates written in YAML. These templates are hierarchical:
they include nested references to lower-level subtemplates
that describe entities (e.g., “a person wearing item”), actions,
or spatial configurations. The system performs recursive
expansion, layer by layer, until all placeholders are replaced
with terminal placeholders. This process naturally creates
variations in instruction complexity:

o Low-complexity instruction: “Follow a person”

o Medium-complexity: “Follow the person wearing
glasses”

o High-complexity: “Follow the person wearing glasses
and deliver the apple juice to them”

Stage 2 — Dynamic Content Generation. Once the
expanded templates contain only atomic placeholders, the
system fills them using curated embedding dictionaries for
verbs, object classes, rooms, and person names. Combina-
tions are sampled using a task weighting vector w, and
filtered through logical rules to eliminate physically implau-
sible instructions (e.g., Put(microwave, sandwich) is invalid).

This two-stage pipeline enables large-scale, controllable
generation of realistic instruction—action pairs while support-
ing task rebalancing and complexity tuning for curriculum
learning.

B. Template and Ontology Design

Unlike prior RoboCup-style generators, D-RDMM outputs
complete instruction—action pairs with symbolic structure,
supports balanced sampling, and allows controlled scaling
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Fig. 2: D-RDMM generation pipeline: Hierarchical templates are expanded into multi-step instructions, then populated
using curated embeddings and filtered for semantic validity. Control parameters like generate_amount and task weights w;,
enable scalable, balanced generation of instruction—action training pairs.

without additional human annotation, D-RDMM defines an
ontology of entities and their affordances:

o 21 locations (e.g., desk, wardrobe, coffee table)

e 6 room types (e.g., kitchen, bedroom, office)

« 7 object classes 50+ items (e.g., snacks, drinks, toys)
o 14 person names (e.g., Kai, Noah, Riley)

Placeholders are only filled with values that pass semantic
filters. For example, Pour(milk, red bowl) is disallowed,
while Pour(sandwich, red bowl) is permitted. Verb—object
and object-location pairings are checked against pre-defined
grammar constraints and affordance maps.

C. Controllability and Task Rebalancing

A key feature of D-RDMM is that dataset size and
task balance are configurable. Researchers specify a task
weighting vector w € R2?? and a global limit gener-
ate_amount. Increasing weoow immediately generates more
person-following samples without modifying templates.

This makes D-RDMM particularly well-suited for:

e Curriculum learning (increasing complexity or lexical
diversity)

o Task-specific augmentation (targeted fine-tuning on un-
derperforming behaviors)

« Ablation studies (removing or isolating specific instruc-
tion types)

D. Dataset Scale and Coverage

The seed release of dataset contains 1,860 expert-verified
samples across 23 task types (see Appendix Table [I). By
adjusting generation parameters, the same setup can scale
to over 100,000 unique samples in under a minute on a
standard CPU.

Each sample references one or more elements from
dataset’s semantic ontology and exhibits natural linguistic

variation in verb choice, object type, and phrasing (e.g., “go
behind the person wearing yellow shoes” vs. “follow the
person wearing blue pants”).

E. Formal Definition

Formally, the dataset is generated as:

p=U U

Apply(g,e) |e € [] Elps]
teT geGy Jj=1

Where:

o T is the set of task categories.

o G is the set of templates for task ¢.

o E[p;] is the list of valid substitutions for placeholder
;-

e € = (€1,...,€,) is a sampled combination from the
Cartesian product.

o Apply replaces placeholders in g with e to yield a
resolved instruction—action pair.

This definition ensures every generated sample is syntac-
tically correct and grounded in valid robotic semantics.

IV. RDMM DATASET EVALUATION AND USE CASE
VALIDATION

We conducted both quantitative evaluation on the D-
RDMM dataset and real-world deployment to validate its ef-
fectiveness as a training resource for robotic decision-making
models. While detailed experiments, training procedures, and
benchmarking results of D-RDMM-trained language models
are presented in a separate research paper [21], this section
summarizes the key findings relevant to the dataset’s quality,
usability, and practical impact.



W Follow M Guide Count W Meet W Greet Describe

100.00

75.00

50.00

25.00

1.75% 38.48% 44.34% 52.23%
L. L 1| L
Qwen2-0.5B Mistral-7B Llama3-8B GPT-4o-mini

Talk Find Locomotion Manipulation Simple
\ \
54.44% 58.74% 87.21% 92.98%
RDMM-0.5B GPT-40 RDMM-7B RDMM-8B

Fig. 3: Accuracy Comparison. Evaluation results of D-RDMM-trained LLMs (LLaMA-3, Mistral, Qwen) vs. 20-shot

ChatGPT-40 and baselines, measured on held-out samples.

A. Model Training Setup

To validate the usability of D-RDMM, we fine-tuned three
publicly available large language models: LLaMA3-8B [22],
Mistral-7B [23], and Qwen-0.5 [24]. These models were
trained end-to-end on the instruction-action pairs generated
by D-RDMM across all task types. The models learned to
map natural language commands to structured robot control
sequences using only text-based input and output.

We additionally evaluated two prompting-based baselines
— ChatGPT-40 and ChatGPT-40-mini — using a 20-shot
setup with representative D-RDMM samples. While these
models demonstrate strong general language ability, they lack
task-specific grounding and structured output alignment.

B. Dataset-Level Accuracy

We evaluated the D-RDMM-trained models on a held-
out subset of the dataset. Accuracy was computed based
on exact match between predicted output and ground truth
action sequence. As shown in Fig[3] all three D-RDMM-
trained models achieved consistently high accuracy across
the dataset, validating the dataset’s utility in teaching com-
plex task reasoning and structured robotic behaviors.

C. Real-World Deployment

Beyond offline evaluation, we deployed D-RDMM-
trained models on a physical robotic platform at the
RoboCup@Home competition, where the robot was tasked
with executing natural language instructions across a va-
riety of household scenarios. The model-controlled system
demonstrated reliable performance in person-following, ob-
ject delivery, navigation, and multi-step planning tasks —
even when interacting with previously unseen entities and
descriptions.

Although systematic real-world metrics such as task suc-
cess rate or response latency were not formally recorded,
the robot was able to interpret natural instructions and
complete task sequences effectively in a live, unstructured
environment. As illustrated in Fig. {] and Fig. [5} D-RDMM-
trained models executed complex sequential behaviors such

as breakfast preparation and grocery tidying in live compe-
tition settings.

V. CONCLUSION

We introduced the Dynamic RDMM Dataset, a control-
lable, scalable, and semantically grounded data generation
framework for training language models to perform robotic
decision making. Each data sample consists of a natural-
language instruction paired with a structured symbolic action
program, enabling precise instruction-following in domestic
settings.

The dataset is constructed through a two-stage
pipeline—hierarchical template expansion and dynamic
content generation—that produces over 100,000 unique,
task-aligned instruction—action pairs from a compact set of
expert-defined templates. D-RDMM supports programmable
control over dataset size, task balance, and linguistic
diversity, making it a flexible tool for robot learning
pipelines, ablation studies, and curriculum-driven training.

We validated the dataset by training multiple open-source
LLMs, achieving high accuracy and robust real-world per-
formance in the RoboCup@Home competition. By treating
dataset generation as a dynamic process rather than a static
artifact, D-RDMM transforms data curation into a tunable
component of robot learning, accelerating experimentation
and deployment.

We release all templates, code, and seed samples to enable
reproducible research and further development of instruction-
grounded robotics systems.
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APPENDIX

This appendix summarizes the task types and symbolic
actions used in the RoboCup@Home deployment. Table
lists the 23 instruction templates along with their generation
ratios. Table[[II| provides a description of the action primitives
used in the competition.

TABLE II: Task Templates Description and Ratio

TABLE III: Dataset Actions

Actions Description

Respond Respond to the user

Move_To Move to a location

Pour_In Pour an object into a container

Search_Object

Search for an object

Search_Person Search for a person

Pickup Pick up an object

Place_On Place the picked-up object

Place_Next Place the picked up object

Give_To Give the object to the user

Open Open the door

Close Close the door

Vision_Ask Ask the vision system and return the answer to
Answer

Answer Receive the answer from  Vision_Ask,
Count_Person, or Count_Object

Follow Follow the person

New_Request Listen to a question from second user and answer

1t

Count_Person

Count people with a given attribute and return the
answer to Answer

Task Description Amount
follow Follow person to location 48
pour Pour object into container 47
bringdesc Bring object from location 134
complex_pose Recognizing human posture 105
complex_countobj Count object at location 64
countobj Count object at location 79
descper Describe person 62
2users Answer the second user’s question 113
goBeaconDoSth Go to place and do something 111
serve Put object onto a designated spot 62
guide Guide person to location 106
store Put object into storage 37
complex_put_on Bring, put on object, and answer 79
complex_deliver Deliver object and answer 150
mgreet Greet person and answer 110
descobj Describe object and answer 77
simple Simple action and answer 18
complex_est Identify extreme attributes 37
complex_greetdress ~ Greet person by outfit and answer 139
complex_countperson Count people by outfit and answer 49
complex_guidedress Guide person by outfit and answer 179
questions Answer a simple question 42
time Tell the time 12
Total 1860

Count_Object

Count a specific object and return the answer to
Answer

Ask_Name Ask a person for their name and return the answer
to Answer

What_Time Tell the time

What_Day Tell the date

‘What_Tomorrow

Tell the tomorrow date
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